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The under-pinning role of mathematics

WATER - Dealing with Pollution.

EARTH and AIR - Nitrogen and clover cycle.
FOETAL BIRTH WEIGHT — Optimal nutrient intake
CONTROLLING PLANT DISEASES - Biocontrol
PASTURE NUTRIENTS — Optimal allocation

and pointers to the future

The relevance of Mathematics in modern life.

Prof. Graeme Wake
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= |Is it an (inter)national need?
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The Academic Environment

“The academic discipline of mathematics has undergone
intense intellectual growth, but its applications to
industrial problems have not undergone a similar

expansion.”

(@

OECD

http://www.oecd.org/datacecd/47/1/41019441.pdf
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This activity has a positive spin-off, for it serves to establish
better links between industry and academic mathematics.

We can provide improved university education of mathematicians through:

The relevance of Mathematics in modern life. Prof. Graeme Wake
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Applied Mathematics seems to be about finding
answers to problems. These are not written down in
some great book and in reality the hardest task for an
applied mathematician is finding good questions.

THE TRIVIAL

THE IMPOSSIBLE

PLEdse
. Tl
The boundaries between them are very blurred. They

STA 3
vary from person to person, and some of my strongest NDﬁBY.,_
memories are of problems that suddenly jump one

from category to another, and this is usually with the THE JUST SOLVABLE

help of colleagues!

The relevance of Mathematics in modern life. Prof. Graeme Wake
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Simple models do better!

Think before you compute.

A graph is worth 1000 equations.

The best computer you’ve got is between your ears!
Charge a low fee at first, then double it next time.
Being wrong is a step towards getting it right.

Build a (hypothetical) model before collecting data.

Do experiments where there is “gross parametric sensitivity”
Learn the biology, etc.

Spend time on “decision support”

The relevance of Mathematics in modern life.
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+ Motivation —River pollution unsustainable
+ The Model description

+ Special Cases of the model

+ Numerical procedure

+ Discussions and conclusions

The relevance of Mathematics in modern life. Prof. Graeme Wake
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Economic activities were developed rapidly within the River Basin
increasing amounts of contaminants discharge

Water pollution, through point and non-point sources, have become a
major environmental concern in the basin

Hence, studies of mathematical models of water pollution for this basin
are desirable, in order to make effective management of water quality

The Model

The relevance of Mathematics in modern life. Prof. Graeme Wake
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Mathematical model of water quality
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Monitoring DO Status in Tha Chin River
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The Mathematics:

Use coupled advection-diffusion equations for
P(x,t) : concentration density of pollutant
X(x,t) : concentration of dissolved oxygen

The full model is developed in:

Pimpunchat B, Wake GC, Sweatman WL, Triampo W & Parshotam A)
“A mathematical model for pollution in a river and its remediation by
aeration”; Applied Mathematics Letters 22: March 2009, pp 304-308.



e MASSEY UNIVERSITY

= = xunenea xiporenvroa \umerical procedure reveals: .

How transient solutions approach
asymptotically to solution downstream

Numerical calculations agree with
analytical solution under no pollution
and saturated dissolved oxygen far
upstream tending to a steady state far
downstream for a long river
depletion in the river.
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© Such a model and its solutions provides decision support on
restrictions to imposed on farming and urban practices.

-~ The oxygen level fortunately remains above the critical value of 30%
of the saturated oxygen concentration and reaches zero far beyond
the length of 325 km of Tha Chin River.

- The model appeared capable of illustrating the effect of aeration
process to increase DO to the water.

~ This constraint is not reached due to the finite length over which
pollution is actually discharged and the oxygen concentration which
remains above the critical threshold value provided q is low enough.

O The relevance of Mathematics in modern life_ Prof. Graeme Wake
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Clovers in these pastures are valued for this N-fixing ability and also
for their superior feed quality for grazing animals

However in some countries, including New Zealand, the major inputs
to the soil-pasture-animal N cycle are from fixation of atmospheric N,
by the clover-Rhizobium symbiosis.

The relevance of Mathematics in modern life. Prof. Graeme Wake
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“New Zealand's largest Crown Research Institute

A combination of renowned research centres such as Ruakura,
Grasslands, Lincoln and Invermay.

But most importantly, individual scientists and teams whose
work is at the heart of pastoral industries, food processing and

innovative products that benefit all New Zealand

Mathematics has had a strong focus in th|s
work, with a
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Distributed-delay-differential equations

Example 1: y’(t) = y(t-T), y([-T,0]) given: Point delay
What is the solution?? Homework!

Example 2:y/(t)=ry(t) (1-1, (y(s)/K)ds) y(0) =y,
Logistic DDE. What is the solution??

The relevance of Mathematics in modern life. Prof. Graeme Wake
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Clover content in pastures is commonly
considered less than optimum, and

subject to large fluctuations in time.

The proportion of clover in pasture and
rate of N fixation has large environmental

impact for farmers and the wider
community.

The relevance of Mathematics in modern life.
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K Soil N availability has a powerful effect on clover/grass
proportions, clovers being more competitive where N
.« availability is low while grasses dominate where N availability is
high in part because uptake of N from the soil is more efficient
than a combination of uptake and fixation. ]
However there are also intrinsic reasons for this
variability, relating to the interactions between

coexisting clovers and grass.

Prof. Graeme Wake

The relevance of Mathematics in modern life_
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The state variables are:
Standing masses at time t of clover C(t), and ryegrass R(t)
© These will be measured in units of kg DM (dry matter) per hectare

These processes include growth of clover tissue from the fixed nitrogen,
senescence of this tissue and subsequent mineralisation which makes
w.’?%\; the nitrogen available in a form that can be used for ryegrass growth.
’{‘ . Instead of describing these processes explicitly, we relate the
§ | enhancement effect on ryegrass growth to the total amount of clover
F mass turnover occurring in a past period of time.

The relevance of Mathematics in modern life. Prof. Graeme Wake
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Feature of the model is an N fixation mechanism that attempts to describe
the beneficial effect of clover on ryegrass without explicitly introducing an
N variable.

Local analysis of the model together with some simulations using the
delay times T, and T, as the control parameters

The relevance of Mathematics in modern life. Prof. Graeme Wake
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This is in contrast to the simulations reported by Thornley et al. (1995)
where large-scale fluctuations existed but eventually settled into a
coexistence equilibrium.

Similarly, the spatial model simulations of Schwinning & Parsons (1996)
suggested the amplitude of the oscillations declined with time.

The delays introduced the oscillatory behaviour, which is observed (as with the
simple delay-logistic). A key decision tool is here.

Reference: K Louie, GC Wake, MG Lambert, A McKay & D Barker "A delay
model for the growth of rye-grass-clover mixtures: Formulation and
preliminary simulations", X 2002, pp31-42.
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2.3 OPTIMAL NUTRITIONAL STRATEGIES
FOR MAMMALIAN DEVELOPMENT:
A SYSTEMSAPPROACH
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| ntroduction

Pregnancy is the main event in the life of a female mammal to
reproduce its progeny and maintain the integrity of the species.

The process of the feotal development is
started as a result of fertilization. After that, a
zygote and then an embryo will form. The embryo
IS Implanted In the uterine cavity of female
mammal and develops into afetus.

o1 W



In this studx we are Interested In a specific
mammal, namely the sheep. The gestation length in
sheep varies from 142 to 152 days. The average is 147
days. There can be multiple gestations, as in the case
of twins or triplets.

o W



The fetus receives nutrition from the mother
critically in the late gestation, during which fetal
growth takes place. Nutrition intake of the mother
affects the size and strength of lambs and the milk
producing ability of the ewe.

Biological studies have shown that both
maternal undernutrition and overnutrition during
pregnancy have an impact on feotal growth and
development, resulting In an increase in the fetal

and neonatal mortality and morbidity. 3
;



We consider the fetal growth in a singleton
pregnancy of sheep in the second half of pregnancy,
from day 75 to day 147.

We use the birth weight as an indicator of the
health of both the fetus and the mother. Our goal Is to
find the dally nutrient intake that will achieve a
desirable birth weight while minimizing the total
nutrient intake in the second half of the pregnancy.

o W



Optimal Control Problem

The fundamental problem in optimal control theory is
to determine afeasible control that maximizes (or

minimizes), where u(t) is nutrient intake rate of the mother,
and x(t) isthe current fetal mass....

J{u} =}‘g [t,x(t),u(t)]dt
subject to Ex(t) = f(6x(1),u(t)
with the boundary conditions: x(t,) = %, and x(t,) = X,

39



We can generate the necessary conditions from the
Hamiltonian H, which is defined asfollows

t, X + Af
The neceéary con&mong e wrltt |n t ms of the
Hamiltonian, using Pontryagin control theory:

‘2"' —0a u =>g,+Af, =0 (optimality condition),
u

R M & (g +af) (adjoint equation),

OX

B f (t, % U) = ‘z; (state equation)

40



Our objective functional minimizes the whole nutrient
Intake for the second half of the pregnancy with respect to a
system of ordinary differential equations modeling fetal

9 r o W t h
Minimize J{u} = fudt =Total nutrient intake
d 0 .
subject to d—)t( = f(xu) = Growth function

with the boundary conditions: x(t,) = %, and x(t,) = %,

41



Fetal Growth Modd

Table 1: The values of parameters r, K and the calculated R? for the

linear, exponential, logistic and Gompertz functions with x, = 0.2 kg.

Function x(t) r K R
+rt
Linear %o 0.06 0.892
ert
Exponential %o 0.05 0.590
XK
Logistic X, + ( K — X, ) et 0.07 7 0.983
{In(ﬁ)(l—e t )}
e %o
Gompertz Xo 0.02 15 0.978

42



To obtain the appropriate logistic function which
best fits our experimental data, we use the least squares
method with the following logistic equation,

X = XK
) e (K- )e

We then use the two-dimensional Newton's
method to estimate the parametersr and K. We found that
r =0.07 daystand K =7kag.

43



To Include the nutritional intake as a control in the
logistic function, we multiply r by the Michaglis-Menten

relationship, y+ L.
So our optimal control problem becomes:

Minimize J{u} = fudt
_ dx  rxu 1_ X
subject to dt_u+L( K)

with the boundary conditions: x(0)=0.2and x(72)=5.5

44



After modifying the model to make it more realistic,
taking into account the fact that the history of nutrient intake
plays an important role in fetal growth, the carrying capacity
(K) is represented by a prescribed function of the cumulative
Intake using empirical relationships suggested by data
a n a I Yy S i S

K(t)=KO+( il )

y + Ly

t
y(t) =fe‘/”(t‘s)u (s)ds
W h e r e

45



Thus, our optimal control problem becomes:

Minimize J{u}=fu dt
to
( )
_ dx  rxu 1_ X
subject to a usl ay
Ko +
\ Yy + Lo)
dy
_=u_
ot LY

with the boundary conditions: x(0) = 0.2, x(72) =5.5and y(0) = O.

46



Solution of One-Dimensional
Optimal Control Problem

The Pontryagin’s Maximum Principle gives a Hamiltonian
expression:

H(t,x,uA)=u+ rxus (1—1)
u+ L K

oH

Optimality Condition: T Oa u

KL= VKHEAL — rxAK 2L
K

47



H
Adjoint Equation: R T

oX

e rut (Zx_l)

u+L| K

Dynamical System:
=

rXu ( X )

1— =
u+ L K )
rud 2x_1\
u+L\ K )

with the boundary conditions: x(0) = 0.2 and x(72) =5.5

O 48



We obtain the formulafor “:

Re= g, fu2 — Oux ffu — 9, fx fu + g, fux f
Auu fu — 9, fuu

Dynamical System:

S FXu 1—1
u+ L K

= 0O

with the boundary conditions: x(0) = 0.2 and x(72) =5.5
@ 49



Solution of Two-Dimensional
Optimal Control Problem

The Pontryagin's Maximum Principle gives a Hamiltonian

expression:
H=u+A4

Fux
u+ L

)
X

ay

y""—o/

+ A, (u-py)

15 M e 215))

y+L,

ay
y+ L,

)(1+A2)

50



Dynamical System:

rXu X
=

u+ L K, + ay
y+L,
¥e=u-— LSy
%_ —Aru 1_ 2X
u+ L K, + ay
y+L,
—AarL,ux®
£ - ay"lzLO + B,
K L 2
[0+, T0 ) e+ L)

with the boundary conditions: x(0) = 0.2, x(72) =5.5, y(0) =0and A, (72)=O0.

5



Theorem 3.1 If %= f(t.xu)=£.(x) f.(U)js separable and g is not
afunction of x, 9 = 9(t,u) for which J{u} =j‘g [t.u(t)]dt

then &= G(t,x,u)=0 spthat uisaconstant.
Proof: Assume that
= f (t,x,u)= f, (x)- f,(u).

fr2

ff, — g, f,f ff
It h% b%r] mown that &= gx u gua Uf gug Xf u + gu ux

Since 9 =9(t,u), then 9x = 9« = 0. gp

~9, B(x) £, (u) £, (x) £(u) + g, B(x) B (u) f, (x) F (u) _
O f1 (%) B (u) - g, . (x) () 50




Numerical Resultsfor One-Dimensional
Optimal Control Problem

We solve the dynamical system, which uses the original
and alternative optimal control algorithm 4, with the following
parameters and boundary conditionst, = Odayst, = 72days, x(0)

=0.2kg, X(72) =55kg,, F =0.07days™ | K =7kg. and
L = 0.09 kg-days™

53



+ experimental data o
numerical solution //
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Figure 2: The sheep fetal weight over the 72 days of the second
half of the pregnancy, plotted together with the experimental data. 54



The calculated fetal weight fits the data very well
with the coefficient of determination, R? of 0.98528.

By solving this system, we obtain the nutrient intake,
considered as the control u, to be a constant which equals
2.0254kg-days™ and the total intake for the mother in the
second ha72If of the pregnancy 1Is

[udt =145.8787 kg
0]

55



Numerical Resultsfor Two-Dimensional
Optimal Control Problem

We solve the dynamical system, which uses the
original and alternative optimal control algorithm |, with
the following parameters and boundary conditions: t, = 0.2
days, t, = 5.5 days, x(0) = 0.2 kg, x(72) = 5.5 kg, y(0) = 0,
A(72) =0, r = 0.07 days?, L =0.09 kg- days?, K,= 7 kg,
a = 01 kg, p = 012 days! and L, = 10 kg.56



FETAL DEVELOPMENT
From zygote to full term.

For McGraw-Hill Publishing
© Cynthia Tumer




We consider the coefficient of determination, R?,
which represents how well the experimental data of fetal
weight fits the computed feotal weight, to determine
which parameter values are appropriate for the model.

58



- experimental data o
numerical solution
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Figure 3. The sheep feotal weight over the 72 days of the second
half of the pregnancy, plotted together with the experimental data
from solving the dynamical system, R? = 0.98541. o9
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Figure 4. The minimum daily nutrient intake over the 72 days
of the second half of the pregnancy to achieve the pre-set birth 60
welaht.
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Figure 5. The minimum daily nutrient intake over 72 days of the
second half of pregnancy plotted together with the sub daily nutrient

Intakes in three equal subintervals of time. 61
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Figure 6: The minimum daily nutrient intake over 72 days of the
second half of pregnancy plotted together with the sub daily nutrient
Intakes in six equal subintervals of time. 62



Discussion and Conclusion

We have considered the feotal growth in a singleton
pregnancy of sheep during the second half of pregnancy
after the differentiated fetus has been formed, from day 75
to day 147. We use the birth weight as an indicator of the
health of both the feotus and the mother.

Our goal wasto find the daily nutrient intake that would
achieve a desirable birth weight while minimizing the total
nutrient intake in the second half of the pregnancy.

63



Finding the optimal nutrient intake to reach the desirable
birth-weight increases the quality of post-natal life-history
and gives rise to a better economic output for farmed
a n i m a I S

The optimal control strategy has been used in our
problem, in which the end point IS set.

We derived the alternative algorithm for a direct
calculation of the control variable u, which now appears
explicitly as a component function in the dynamical
system, without having to calculate all the solutions of the

adjoint equation(s).

64



The numerical solutions with specific parameter values
h ave been obtained.

We aso show numerical results on the nutrient
Intake as a step function by dividing the total time equally
into three and six periods. We then obtain the nutrient
Intake In each of the three or six time periods so that it is
easier to advice a farmer on how to feed the animals in a
real situation.

A twin or triple pregnancy, or pregnancy in other
mammals, can be considered and the same agorithm may

be successfully applied. 65



Mathematical Model of Induced Resistance to Plant Diseases
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Mathematical Model of Induced Resistance to Plant Diseases o
|—Introduction to Plant Disease Definition:

A plant in general become diseased
when it is continuously disturbed by
causal agents that results in physio-
logical abnormality, that is disruption
of the plant's normal structure and

growth. Causal agents:

‘°".~.¢ L Sl S

Schematic representation of the basic functions in

ﬁ’:Plant (!eftg _ _ _

and the'intérference with these functions (right)

caused bsy some common types of plant
ISeases (source: Agrios (2005)).



Mathematical Model of Induced Resistance to Plant Diseases
Introduction to Plant Disease
I— Plant Disease

: L WIS F e
Fruitspot Leaf spot




Plant Disease Management

Eradication

Protection Resistance



|—Induced Resistance

A"—What is IR?

PLANT

Expression of

IR pathogen: defence responses that occur

. R affected by icitor
after the plantis challenged by the pathogen pa— - il
by an externally applied compound (elicitor) e o epplcation
or oy lernally applie P : factors (e.g. enhances host
m application of elicitor has shown to light, soil abrice
activate defence moisture, !ndyced mechanisms
genes and protect the plants plant FESERN and reduces
against disease. nutrition n.crop 11 \7 pathogen

protection ' development

= IR can provide 20-85%
disease control =

= IR is affected by many ENVIRONMENT 7—v PATHOGEN
factors: especially the environment.

Favourable conditions may
increase disease
development

And reduce IR response

,‘\ . ’/
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Mathematical Model of Induced Resistance to Plant Diseases
"—Development of a Prototype Induced Resistance Model

|—Model's Assumptions

This IR Model is based on Susceptible-Infected-Remove Model
and basic Differential Equations:
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of Induced Resistance to Plant Diseases

LDew.-!opment of 3 Prototype Induced Resistance Model

L Schematic Diagram for IR Model

SUSCEPTIBLE
Elicitor (8) p
RESISTANT DISEASED
(R) (D)

Figure: A simplified phenomenon of induced resistance in the treated
plants. For the untreated plants, there is only one way flow which is from
S to R and described as a SIR-model.
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|—Development of a Prototype Induced Resistance Model

|—Induced Resistance Experiment Timeline

T

- Induction Time —_—

= - o— -
' Disease Assessment
|

Dav 0

Figure: Experiment timeline on induced resistance study.

Pinus radiata (Monterey pine)

Diplodia pinea




Mathematical Model of Induced Resistance to
Plant Diseases

|—Development of a Prototype Induced
Resistance Model

Figure: Greenhouse experiment: Pine seedlings were treated with Methyl

jasmonate (MeJA) in with specific environmental condition (i.e. fixed

temperature, moisture, light).
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|I—Development of a Prototype Induced Resistance Model
|—Induced Resistance Experiment Timeline




Mathematical Model of Induced Resistance to Plant Diseases

l—Development of a Prototype Induced Resistance Model

L Induced Resistance Timeseries

Elicitor Diseace
Treatment Assessment
& % = % .' » Time|days)
b 0 > T— Induction time ’ I?»‘ r‘fl id? Ia‘3

Figure: Time series on induced resistance study.



Mathematical Model of Induced Resistance to Plant Diseases

/\

—Development of a Prototype Induced Resistance ..

The TREATED
for 0 <t < tp (Pre-inoculation)

dR/dt = (e(t) - YR)(1 - R)

forty <t< T (Post-inoculation)

dR/dt = (e(t) - YR)(1 - R - D)
dD/dt =pD (1-R - D)

R (0) = BR (1)

R (o) =Rp (2)

D (tp) = Do (3)

where elicitor effectiveness in the

SUSCEPTIBLE

-~
. . Elicitor
system is described as; c%’
;J
-~

e(t) = _kt
2 F 12

RESISTANT
(R

and k, L are constants..

(S) \ g
™,

DISEASED

(o)




Mathematical Model of Induced Resistance to Plant Diseases
-Parameter Estimation

I—Determine the Unknown Parameters - The Process

Untreated
model Find the lowest Results: -
COMPARE I SSE ——» Set of parameter for
Untreated ﬁ’a’BR’DO
data

_ algl mgs
Fi The process for parameter estimation is using MATLAB o P ey -
igure: i N e - L R- 00 28 Cpeyi=3
W —— - = . coor IR e I —
TSNS Wie T Jd"Insgec R “FTdrn D8 3= o “Ma*=
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Healthy (S+R) Disease (D)

Susceptible (S) Resistant (R)

—

Mathematical Model of Induced Resistance to Plant Diseases

"—Transient Diagram with Optimal Parameters

I—When inoculation time tp = 3

T T T
Pathogen was introduced here

0.5 -
- +
% 50 50 70
Untreated
1 T T MOdeI
o= = = - in purple
"o 3 10 20 30 l_ 40 50 60 70
I ‘ _Time (days) ' ‘ “Treated” in
blue.
.:/, Model
A /’-{ .
o 3 10 20 39|_ ime (d 30 50 60 70
ime (days :
I , I d _ ' ' Experimental
il data **
o 3 10 20 30 40 50 60 70

Time (days)
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| Phase Plane for IR Model

1 U 1 U T 1 T T T T
Yy i Unireated
9 =
0 Wi tp = 3 days
0.8} S |
. ~
> ~
0.7} tp = 13 days
0.6} t =14 days
8
g 051 Pathogen is i
A I introduced here
Q04 tp = 35 days
03} g
0.2f \ = I
S
0.1f < |
ke ~
Of ]
1 1 1 1 1 ! 1

Resistant



Mathematical Model of Induced Resistance to Plant Diseases

"—Determine the optimal inoculation time tp

0-8 Al L) Ll T T T T
—— Treated Model
— 0.7 —  — Untreated Model
nes ¢ Experimental data
~—iL
O e e T e
o
= _
: ”/
g 0'5 1 ’ ‘ ’_//’/ ’
“a e
S 0.4F * ——
q_) '///
 o3f ~—o® —
& *
B o2t
%
0‘1 1 1 1 L L A A
0 5 10 15 20 25 30 35

Induction time tp days




Mathematical Model of Induced Resistance to Plant

Diseases
1E ODLHTIAL € () olaled=inlnrsinioln
Varying elicitor concentration when inoculation time tp = 7 days

Model
> Experimental data

| -
-l o

o5} |
\

Diseased at the final time ( DFinal‘ D (tp+35) )

0.4}F
0.3} \
* \—//*
0.2 2 1 2 4 2 2 2
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

a (concentration)



Mathematical Model of Induced Resistance to Plant Diseases
"—Determine a Continuous Elicitor Control Strategy

|—Applying Pontryagin’s Optimal Control Theory

Resistant

FI1GuRrE 7.1: Schematic diagram for the control of the continuous elicitor applica-
tion. The elicitor effect is determined by the elicitor applied daily until it reaches
the target disease control.



Mathematical Model of Induced Resistance to Plant Diseases

I—Determine a Continuous Elicitor Control Strategy

|—Applying Pontryagin's Optimal Control Theory

The dynamics of the first stage in the interval [0,¢,], with ¢, > 0 denotes the induc-

tion time, are modelled by

IR .
%—:(Em—wmu—R) : R(0) = R,
(

[4

Whereas in the second stage [f,, 1], the dynamics involves that of disease D:

IR

ﬁ—:(Em—ﬂMH—R—D] . R(t,) = R,

(

% = BD(1- R- D) . D(t,) = D, (7.6)
(

B o B . E(t,) = E,.

dt

r -
E(t) = / soe """ Te(T) dr,
J U



Mathematical Model of Induced Resistance to Plant Diseases

l—Determine a Continuous Elicitor Control Strategy

l-—-Applying Pontryagin's Optimal Control Theory

Let the control function ¢(f) be bounded by
0 ekf) < Cingii (7.8)

Hence, this optimal control problem consists of determining a piecewise continu-
ous control function e(t) where ¢ : [0,¢;] = [0. ¢, that minimises the objective
functional

ty
J{c} = / ¢ dt (7.9)
Jo



Mathematical Model of Induced Resistance to Plant Diseases

"—Determine a Continuous Elicitor Control Strategy

I—Applying Pontryagin’s Optimal Control Theory

control

C

and switching function ¢

c
¢ L LR LT

e RN, TRA P PV & AW A

1.5 2 2.5 3
time t



Mathematical Model of Induced Resistance to Plant Diseases

Conclusions
This model is able to predict the relative proportion of plants in each compartment.
The model can be quantitatively estimate the effectiveness of elicitor treatment.
This proposed mathematical model is generic; will be applicable for a range of
plant-pathogen-elciitor scenarios.
For more information please refer to:

Abdul Latif, N.S., Wake, G.C., Reglinski, T. & Elmer, P.A.G.
(2014). Modelling induced resistance to plant disease. Journal
of Theoretical Biology, 347, 144-150.

Nurul Syaza Abdul Latif (2014). Mathematical modelling of
induced to plant disease. PhD. Dissertation. Massey
University, New Zealand.

Abdul Latif, N.S., Wake, G.C., Reglinski, T., Elmer, PA.G. &
Taylor, J. T. (2013). Modelling induced resistance to plant
disease using a dynamical system approach. Frontiers Plant
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Interested to model the epidemiology of ganoderma disease and

looking at its impact on economic losses of oil palm industry

BEYOND
CURE!




Modelling Soil Nutrients and Pasture
Yield

A commercially available model developed by
Agknowledge and Wakescience



The Nutrients Model

e Pisthe Olsen P [1g P cm3] level in the soil

e A'is the Quick Test Potassium (QTK) [cmol(+)
kg3] level

e Sisthe extractable organic sulphur (EOS) [xg S
g”]



The Nutrients Model
P= Phosphorus, K = potassium, S = Sulphur
dP/dt =
dK/dt =

dS/dt =

where the right hand sides are empirically determined
functions of the constituent chemicals

Relative yield of Grass: dG/dt =r(PK,S,) G (1
-G/100)
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Potassium

Kauru soil

30 ] Timaru soil

25 R? = [0.5629 —0.0654]

N

QTK

R? = [0.9156 0.1252]

S5

20 Claremont soil Otiake soil

R? = [0.4196 0.0424]

. L e s

0 R2 = [0.9061 0.4398] i s T

{6 SRRl | DR :TEHRE . BRRN AR AR . 0 1 D PLitH G N ER
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Effect of application rate of 0 (e)and 60 (e) [kg K ha—1] fertiliser on QTK level over time in different
NZ soils.



Extractable Organic Sulphur (EOS)

12 4
10 B2 — 10.843]1 993 | 0.9088] o X 4 ettt aga

organic S [ug S g7
b ch— 0

S
rd

30 35

o

Ut

0 5 10 15 20 2!
time [years]

Extractable Organic Sulphur values in the soil vs time in years when the soil
received superphosphate at rates 0 (@), 188 (#), and 376 (A) [kg ha=1 yr—1].
The model equation is parametrized with this data and the parameters found
are: Sp = 2.1423, ., = 3.9367 x 10—%, Ky = 7.9518, and the constant ¢ is 1.4481
for 188 [kg ha—! yr—!] applications and is 1.6540 for the 376 applications.



R¥ip=aly Kp 11 +P/ Relative Yield vs Olsen P

kTp 2 +P

120 Vol§an|c'

100
80
60
40
20

Note that different soils
respond differently on
same Olsen P level i
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Relative yield
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RYIk= alk kTh il +K/ Relative Yield vs QTK

kT2 +K

Soils have only one group 120

for Potassium

100

80 |-

60

Relative yield

a0

20 |
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QTK [cmol(+) kg ' x 24.375]



RVis=als kTsI1 +S/ Relative YlEId VS EOS

kTs 2 +5

Soils have only one group

120

for Sulphur
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Olsen P [pg cm™]

60

Testing of the Model

Phosphorous
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